3.621 \(\int \frac{(d+e x)^4}{(a+b (d+e x)^2+c (d+e x)^4)^2} \, dx\)

Optimal. Leaf size=270 \[ \frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{2 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (b-\frac{4 a c+b^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} e \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (b \sqrt{b^2-4 a c}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} \sqrt{c} e \left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

((d + e*x)*(2*a + b*(d + e*x)^2))/(2*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + ((b - (b^2 + 4*a*c
)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2
- 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + ((b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*
x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.579225, antiderivative size = 270, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {1142, 1120, 1166, 205} \[ \frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{2 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (b-\frac{4 a c+b^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} e \left (b^2-4 a c\right ) \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (b \sqrt{b^2-4 a c}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} \sqrt{c} e \left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2,x]

[Out]

((d + e*x)*(2*a + b*(d + e*x)^2))/(2*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + ((b - (b^2 + 4*a*c
)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2
- 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + ((b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*
x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1120

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(d^3*(d*x)^(m - 3)*(2*a +
 b*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int[(
d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{2 a-b x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{2 \left (b^2-4 a c\right ) e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\left (b^2+4 a c-b \sqrt{b^2-4 a c}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right )^{3/2} e}+\frac{\left (b^2+4 a c+b \sqrt{b^2-4 a c}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right )^{3/2} e}\\ &=\frac{(d+e x) \left (2 a+b (d+e x)^2\right )}{2 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\left (b^2+4 a c-b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}} e}+\frac{\left (b^2+4 a c+b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 0.549425, size = 263, normalized size = 0.97 \[ \frac{-\frac{2 \left (-2 a (d+e x)-b (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}-4 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{c} \left (b^2-4 a c\right )^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{4 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2,x]

[Out]

((-2*(-2*a*(d + e*x) - b*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (Sqrt[2]*(-b^2 -
4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 -
4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[
c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(4*e)

________________________________________________________________________________________

Maple [C]  time = 0.017, size = 323, normalized size = 1.2 \begin{align*}{\frac{1}{c{e}^{4}{x}^{4}+4\,cd{e}^{3}{x}^{3}+6\,c{d}^{2}{e}^{2}{x}^{2}+4\,c{d}^{3}ex+b{e}^{2}{x}^{2}+c{d}^{4}+2\,bdex+b{d}^{2}+a} \left ( -{\frac{b{e}^{2}{x}^{3}}{8\,ac-2\,{b}^{2}}}-{\frac{3\,bde{x}^{2}}{8\,ac-2\,{b}^{2}}}-{\frac{ \left ( 3\,b{d}^{2}+2\,a \right ) x}{8\,ac-2\,{b}^{2}}}-{\frac{d \left ( b{d}^{2}+2\,a \right ) }{2\,e \left ( 4\,ac-{b}^{2} \right ) }} \right ) }+{\frac{1}{ \left ( 16\,ac-4\,{b}^{2} \right ) e}\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ( -{{\it \_R}}^{2}b{e}^{2}-2\,{\it \_R}\,bde-b{d}^{2}+2\,a \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,c{d}^{2}e{\it \_R}+2\,c{d}^{3}+be{\it \_R}+bd}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x)

[Out]

(-1/2*b*e^2/(4*a*c-b^2)*x^3-3/2*d*b*e/(4*a*c-b^2)*x^2-1/2*(3*b*d^2+2*a)/(4*a*c-b^2)*x-1/2*d/e*(b*d^2+2*a)/(4*a
*c-b^2))/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)+1/4/(4*a*c-b^
2)/e*sum((-_R^2*b*e^2-2*_R*b*d*e-b*d^2+2*a)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x
-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{b e^{3} x^{3} + 3 \, b d e^{2} x^{2} + b d^{3} +{\left (3 \, b d^{2} + 2 \, a\right )} e x + 2 \, a d}{2 \,{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} e^{5} x^{4} + 4 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d e^{4} x^{3} +{\left (b^{3} - 4 \, a b c + 6 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d^{2}\right )} e^{3} x^{2} + 2 \,{\left (2 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d^{3} +{\left (b^{3} - 4 \, a b c\right )} d\right )} e^{2} x +{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} d^{4} + a b^{2} - 4 \, a^{2} c +{\left (b^{3} - 4 \, a b c\right )} d^{2}\right )} e\right )}} - \frac{1}{2} \, \int -\frac{b e^{2} x^{2} + 2 \, b d e x + b d^{2} - 2 \, a}{{\left (b^{2} c - 4 \, a c^{2}\right )} e^{4} x^{4} + 4 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d e^{3} x^{3} +{\left (b^{2} c - 4 \, a c^{2}\right )} d^{4} +{\left (b^{3} - 4 \, a b c + 6 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d^{2}\right )} e^{2} x^{2} + a b^{2} - 4 \, a^{2} c +{\left (b^{3} - 4 \, a b c\right )} d^{2} + 2 \,{\left (2 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d^{3} +{\left (b^{3} - 4 \, a b c\right )} d\right )} e x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="maxima")

[Out]

1/2*(b*e^3*x^3 + 3*b*d*e^2*x^2 + b*d^3 + (3*b*d^2 + 2*a)*e*x + 2*a*d)/((b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c -
4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4
*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*d^2)*e) - 1/2*integrate(-(b*e^2*
x^2 + 2*b*d*e*x + b*d^2 - 2*a)/((b^2*c - 4*a*c^2)*e^4*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^3*x^3 + (b^2*c - 4*a*c^2)*
d^4 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^2*x^2 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*d^2 + 2*(2*(b^2*c
- 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e*x), x)

________________________________________________________________________________________

Fricas [B]  time = 2.13479, size = 5245, normalized size = 19.43 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="fricas")

[Out]

1/4*(2*b*e^3*x^3 + 6*b*d*e^2*x^2 + 2*b*d^3 + 2*(3*b*d^2 + 2*a)*e*x + sqrt(1/2)*((b^2*c - 4*a*c^2)*e^5*x^4 + 4*
(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 +
 (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*d^2)*e)*sqrt(-((b^6*c -
 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5
)*e^4)) + b^3 + 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))*log((3*b^2 + 4*a*c)*e*x
+ (3*b^2 + 4*a*c)*d + sqrt(1/2)*(2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*e^3*sqrt(1/((b^6*c^2
 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) + (b^4 - 8*a*b^2*c + 16*a^2*c^2)*e)*sqrt(-((b^6*c - 12*a*
b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)
) + b^3 + 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))) - sqrt(1/2)*((b^2*c - 4*a*c^2
)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c -
4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*d^2)*e)*s
qrt(-((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^
4 - 64*a^3*c^5)*e^4)) + b^3 + 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))*log((3*b^2
 + 4*a*c)*e*x + (3*b^2 + 4*a*c)*d - sqrt(1/2)*(2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*e^3*sq
rt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) + (b^4 - 8*a*b^2*c + 16*a^2*c^2)*e)*sqrt(-(
(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64
*a^3*c^5)*e^4)) + b^3 + 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))) - sqrt(1/2)*((b
^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2)*e^3*x^2 +
2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*
b*c)*d^2)*e)*sqrt(((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 +
48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) - b^3 - 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2
))*log((3*b^2 + 4*a*c)*e*x + (3*b^2 + 4*a*c)*d + sqrt(1/2)*(2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*
b*c^4)*e^3*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) - (b^4 - 8*a*b^2*c + 16*a^2*c^
2)*e)*sqrt(((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*
b^2*c^4 - 64*a^3*c^5)*e^4)) - b^3 - 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2))) + s
qrt(1/2)*((b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a*c^2)*d^2
)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 - 4*a^2*c +
 (b^3 - 4*a*b*c)*d^2)*e)*sqrt(((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*
a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) - b^3 - 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*
a^3*c^4)*e^2))*log((3*b^2 + 4*a*c)*e*x + (3*b^2 + 4*a*c)*d - sqrt(1/2)*(2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c
^3 - 64*a^3*b*c^4)*e^3*sqrt(1/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) - (b^4 - 8*a*b^2*c
 + 16*a^2*c^2)*e)*sqrt(((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*e^2*sqrt(1/((b^6*c^2 - 12*a*b^4*c
^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*e^4)) - b^3 - 12*a*b*c)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4
)*e^2))) + 4*a*d)/((b^2*c - 4*a*c^2)*e^5*x^4 + 4*(b^2*c - 4*a*c^2)*d*e^4*x^3 + (b^3 - 4*a*b*c + 6*(b^2*c - 4*a
*c^2)*d^2)*e^3*x^2 + 2*(2*(b^2*c - 4*a*c^2)*d^3 + (b^3 - 4*a*b*c)*d)*e^2*x + ((b^2*c - 4*a*c^2)*d^4 + a*b^2 -
4*a^2*c + (b^3 - 4*a*b*c)*d^2)*e)

________________________________________________________________________________________

Sympy [B]  time = 48.5438, size = 571, normalized size = 2.11 \begin{align*} - \frac{2 a d + b d^{3} + 3 b d e^{2} x^{2} + b e^{3} x^{3} + x \left (2 a e + 3 b d^{2} e\right )}{8 a^{2} c e - 2 a b^{2} e + 8 a b c d^{2} e + 8 a c^{2} d^{4} e - 2 b^{3} d^{2} e - 2 b^{2} c d^{4} e + x^{4} \left (8 a c^{2} e^{5} - 2 b^{2} c e^{5}\right ) + x^{3} \left (32 a c^{2} d e^{4} - 8 b^{2} c d e^{4}\right ) + x^{2} \left (8 a b c e^{3} + 48 a c^{2} d^{2} e^{3} - 2 b^{3} e^{3} - 12 b^{2} c d^{2} e^{3}\right ) + x \left (16 a b c d e^{2} + 32 a c^{2} d^{3} e^{2} - 4 b^{3} d e^{2} - 8 b^{2} c d^{3} e^{2}\right )} + \operatorname{RootSum}{\left (t^{4} \left (1048576 a^{6} c^{7} e^{4} - 1572864 a^{5} b^{2} c^{6} e^{4} + 983040 a^{4} b^{4} c^{5} e^{4} - 327680 a^{3} b^{6} c^{4} e^{4} + 61440 a^{2} b^{8} c^{3} e^{4} - 6144 a b^{10} c^{2} e^{4} + 256 b^{12} c e^{4}\right ) + t^{2} \left (- 12288 a^{4} b c^{4} e^{2} + 8192 a^{3} b^{3} c^{3} e^{2} - 1536 a^{2} b^{5} c^{2} e^{2} + 16 b^{9} e^{2}\right ) + 16 a^{3} c^{2} + 24 a^{2} b^{2} c + 9 a b^{4}, \left ( t \mapsto t \log{\left (x + \frac{16384 t^{3} a^{3} b c^{4} e^{3} - 12288 t^{3} a^{2} b^{3} c^{3} e^{3} + 3072 t^{3} a b^{5} c^{2} e^{3} - 256 t^{3} b^{7} c e^{3} + 64 t a^{2} c^{2} e - 128 t a b^{2} c e - 4 t b^{4} e + 4 a c d + 3 b^{2} d}{4 a c e + 3 b^{2} e} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4)**2,x)

[Out]

-(2*a*d + b*d**3 + 3*b*d*e**2*x**2 + b*e**3*x**3 + x*(2*a*e + 3*b*d**2*e))/(8*a**2*c*e - 2*a*b**2*e + 8*a*b*c*
d**2*e + 8*a*c**2*d**4*e - 2*b**3*d**2*e - 2*b**2*c*d**4*e + x**4*(8*a*c**2*e**5 - 2*b**2*c*e**5) + x**3*(32*a
*c**2*d*e**4 - 8*b**2*c*d*e**4) + x**2*(8*a*b*c*e**3 + 48*a*c**2*d**2*e**3 - 2*b**3*e**3 - 12*b**2*c*d**2*e**3
) + x*(16*a*b*c*d*e**2 + 32*a*c**2*d**3*e**2 - 4*b**3*d*e**2 - 8*b**2*c*d**3*e**2)) + RootSum(_t**4*(1048576*a
**6*c**7*e**4 - 1572864*a**5*b**2*c**6*e**4 + 983040*a**4*b**4*c**5*e**4 - 327680*a**3*b**6*c**4*e**4 + 61440*
a**2*b**8*c**3*e**4 - 6144*a*b**10*c**2*e**4 + 256*b**12*c*e**4) + _t**2*(-12288*a**4*b*c**4*e**2 + 8192*a**3*
b**3*c**3*e**2 - 1536*a**2*b**5*c**2*e**2 + 16*b**9*e**2) + 16*a**3*c**2 + 24*a**2*b**2*c + 9*a*b**4, Lambda(_
t, _t*log(x + (16384*_t**3*a**3*b*c**4*e**3 - 12288*_t**3*a**2*b**3*c**3*e**3 + 3072*_t**3*a*b**5*c**2*e**3 -
256*_t**3*b**7*c*e**3 + 64*_t*a**2*c**2*e - 128*_t*a*b**2*c*e - 4*_t*b**4*e + 4*a*c*d + 3*b**2*d)/(4*a*c*e + 3
*b**2*e))))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{4}}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^2,x, algorithm="giac")

[Out]

integrate((e*x + d)^4/((e*x + d)^4*c + (e*x + d)^2*b + a)^2, x)